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We develop an all-electron quantum Monte Carlo (QMC) method for solids that does not rely on

pseudopotentials, and use it to construct a primary ultra-high-pressure calibration based on the equation of

state of cubic boron nitride. We compute the static contribution to the free energy with the QMC method

and obtain the phonon contribution from density functional theory, yielding a high-accuracy calibration up

to 900 GPa usable directly in experiment. We compute the anharmonic Raman frequency shift with QMC

simulations as a function of pressure and temperature, allowing optical pressure calibration. In contrast to

present experimental approaches, small systematic errors in the theoretical EOS do not increase with pres-

sure, and no extrapolation is needed. This all-electron method is applicable to first-row solids, providing a

new reference for ab initio calculations of solids and benchmarks for pseudopotential accuracy.
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Although the number of density-functional-theory
(DFT) studies continues to grow explosively, the accuracy
of their predictions is variable, limiting confidence in DFT
results as a quantitative calibration for experimental stud-
ies. The quantum Monte Carlo (QMC) technique is the
highest-accuracy method for finding the ground state of a
many-electron Hamiltonian. For solids with atoms heavier
than He, however, the Hamiltonian itself is approximated
using pseudopotentials (PPs) based on a lower-accuracy
theory, limiting its reliability, and as we show, commonly
used PPs give disparate results. In this Letter, we push the
state of the art in accuracy by introducing a method for an
all-electron DMC simulation of solids, eliminating the bias
from pseudopotentials, and apply it to create a high-
accuracy pressure calibration scale.

The combination of ultra-high-pressure mineralogy with
seismology has yielded a wealth of insight into the internal
structure of our planet. Pressure is the key that links these
disciplines, mapping phase transitions and mineral prop-
erties to planetary depth. Establishing an absolute pres-
sure calibration at multimegabar pressures poses a funda-
mental and continuing problem for high-pressure experi-
ments. Primary calibrations are based on data from
shock-wave experiments, which infer pressure from con-
servation of momentum and energy as the shock tra-
verses the sample. Scales differ from each other by as
much as 7% at room temperature, with even greater dis-
crepancies at high temperature [1]. Such disparity remains
a serious obstacle to a quantitative understanding of Earth’s
interior.

A pressure calibrant is a material with a known equation
of state (EOS), placed in hydrostatic equilibrium with the
test subject (e.g., ruby [2]). High-pressure Brillouin scat-
tering, in conjunction with x-ray diffraction measurements
of volume, can be integrated to provide an EOS, but a

correction must be made to transfer from an adiabatic to an
isothermal path [3]. New approaches such as quasiadia-
batic Z-pinch based experiments [4,5] also hold future
promise for a primary scale. There have been attempts to
refine the ruby scale [6], and new calibrations have been
suggested [3]. Cubic boron nitride (c-BN) has been iden-
tified as a promising material for a new scale [7]. We
provide a new pressure scale based on diffusion
Monte Carlo (DMC) calculations of the EOS and Raman
frequency of c-BN. This theoretical approach has the
advantage that the method works equally well under high
compression, and uncertainty does not grow with pressure.
In a wide-gap insulator such as c-BN, the free energy

can be written as a sum of the frozen lattice enthalpy,
dependent only on volume, and a phonon thermal
free energy, which depends on both volume and tempera-
ture. Since the static enthalpy dominates contribution at
ordinary temperatures, errors in a theoretical EOS can most
often be attributed to the static part. Previous calculations
of the EOS of c-BN have been based on DFT [7], which
use approximate functionals to treat electron exchange and
correlation. Several functionals are in common use, each
giving rise to a different EOS, with no a priori way to
predict which will give the most reliable result.
QMC methods explicitly treat electron exchange and

correlation instead of resorting to approximate functionals.
Diffusion Monte Carlo samples the many-body ground
state of the Hamiltonian through a stochastic projection
of the trial function. In practice, a fixed-node approxima-
tion is used for fermions, such as electrons, which gives
relatively small errors when the nodes are obtained from
high-quality DFT orbitals for electronically simple mate-
rials such as c-BN. DMC for solids has been demonstrated
to give significantly more accurate cohesive energies [8],
equations of state and Raman frequencies [9], and phase
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transitions [10] than DFT. We have used both the CASINO

QMC software suite [11] and QMCPACK [12].
QMC simulations of solids are currently performed

within the pseudopotential (PP) approximation, in which
the core electrons are replaced by a nonlocal potential
operator [8]. Since PPs are presently constructed with a
lower-accuracy theory, such as Hartree-Fock (HF) or DFT,
this replacement represents an uncontrolled approxima-
tion. To eliminate this error, we develop a method for all-
electron (AE) QMC simulations of solids in QMCPACK

using trial wave functions derived from full-potential lin-
earized augmented plane wave (FP-LAPW) calculations
using the EXCITING code [13]. Space is divided into spheri-
cal muffin tin regions around the nuclei, and an interstitial
region. Orbitals are represented inside the muffin tins as a
product of radial functions and spherical harmonics, and
outside as plane-waves. To ensure that a wave function
satisfies the variational principle, it must be both continu-
ous and smooth. We utilize a super-LAPW formalism that
enforces continuity and smoothness at the muffin tin
boundary. For efficiency, we represent the orbitals as 3D
B splines in the interstices and the product of radial splines
and spherical harmonics in the muffin tins.

Since AE QMC simulations are computationally expen-
sive, we perform these simulations in 8-atom cubic super-
cells. Simulation cells this small would typically have
significant finite-size errors. By combining data from AE
and PP simulations performed in both 8- and 64-atom
supercells, we simultaneously eliminate systematic errors
from PPs and finite-size effects. The corrected static-lattice
energy is given at each volume as

E ¼ EPP
64 þ ½EAE

8 � EPP
8 � þ �MPC

64 þ �kinetic
64 ; (1)

where the term in brackets removes the pseudopotential
bias. �MPC

64 and �kinetic
64 are, respectively, potential [14] and

kinetic [15] corrections for finite-size errors. We perform
this procedure with three different PP sets commonly used
in the QMC simulations: HF PPs from Trail and Needs
(TN) [16]; HF PPs from Burkatzki, Filippi, and Dolg
(BFD) [17]; and DFTGGA [18] PPs generated with
OPIUM (WC) [19]. Performing the same procedure with
128-atom PP simulations and 16-atom AE simulations
yields statistically indistinguishable results, demonstrating
that finite-size errors are converged. Additional details are
in the supplementary material [20].
To compute the phonon free energy, we use den-

sity functional perturbation theory (DFPT) in the
QUANTUM ESPRESSO package [21] with the Wu-
Cohen functional and the OPIUM PPs. The phonon density
of states, from which we derive thermodynamic data, is
usually very well-described with DFT.
We compute the free energy for our c-BN system at 12

unit-cell volumes, spanning volume compression ratios
from 0.84 to 2.0, corresponding to pressures of about
�50 GPa to 900 GPa. Theoretical studies have not identi-
fied any structural transition below 1 TPa [22], nor has one
been observed experimentally. We use the Vinet form [23]
for the isothermal EOS, which we find represents our
free energy data very well, yielding the bulk modulus,
B0, its pressure derivative, B

0
0, and the equilibrium volume,

V0 [Table I(a)]. From our QMC error bars, we compute
statistical confidence ranges, taking into account parameter
cross-correlations with a simple Monte Carlo procedure.
Figure 1 shows the EOS of c-BN at 300 K, with experi-

mental data from Datchi et al. [24] and Goncharov et al.
[7], as well as the present work from simulations with three
different PPs. The residuals in (c) are derived from DMC
simulation with PPs alone, while those in (b) combine all-
electron and PP data. The discrepancy between the theo-
retical curves in (c), suggests that PP simulation alone does
not provide sufficient accuracy. Once the PP data is com-
bined with AE data, as in (b), all the theoretical curves
come into good agreement. Our theoretical EOS agrees
with that in Refs. [7,24] within the experimentally mea-
sured pressure range, but the experimental extrapolation
shows significant deviation at high pressure.
We may write the thermal equation of state in the form

PðV;TÞ¼P300 KðVÞþPthðV;TÞ�PthðV;T¼300Þ; (2)

where P300 K is the room-temperature contribution, fitted
to the Vinet form. The phonon contribution is fitted to an
augmented Debye model,

PthðV; TÞ ¼ �@FDð�; TÞ
@�

@�

@V
(3)

�ðV; TÞ ¼ �0ðVÞ þ �ðVÞ expð��ðVÞTÞ (4)

TABLE I. Parameters for the c-BN EOS and Raman calibra-
tion.

(a) Parameters for 300 K EOS

Source (# of atoms) V0 ( �A3) B0 (GPa) B0
0

TNPPð64Þ=AEð8Þ 11.792(18) 381(6) 3.87(6)

WCPPð64Þ=AEð8Þ 11.769(17) 385(6) 3.86(6)

BFDPPð64Þ=AEð8Þ 11.781(20) 382(7) 3.87(7)

BFDPPð128Þ=AEð16Þ 11.812(8) 378(3) 3.87(3)

Datchi et al.[24] 11.8124 395(2) 3.62(5)

Goncharov et al. 11.817(32) 387(4) 3.06(15)

(b) Parameters for thermal pressure

n �0nðK �A�3nÞ �nðK�1 �A�3nÞ �nðK �A�3nÞ
0 4:836 66� 103 2:598 61� 10�3 �4:869 56� 103

1 �6:929 70� 101 �1:200 50� 10�4 1:763 44� 102

2 4:634 28� 10�1 2:789 13� 10�6 �2:186 05� 100

3 �1:273 47� 10�3 �2:008 99� 10�8 9:303 18� 10�3

(c) Parameters for Raman calibration

n cnðcm�1Þ Rn (GPa) b

0 1055.9 349.87 3.0155

1 �144:24 1849.4

2 1497.8 112.33
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xðVÞ¼x0þx1Vþx2V
2þx3V

3; x¼�0; � or � (5)

in which the Debye temperature, �, is a function of both V
and T [Table I(b)]. The Debye free energy per two-atom
cell, excluding the zero-point term, is given by

FD ¼ 6kBT

�
ln

�
1� e�=T

�
�

�
�

T

�
3 Z �=T

0

x3

ex � 1
dx

�
: (6)

c-BN can be used to calibrate pressure optically by mea-
suring the frequency shift of the TO Raman mode. We
compute the pressure and temperature dependence of this
frequency. Within the quasiharmonic approximation, pho-
non frequencies have explicit dependence on volume only.
At constant pressure, however, an implicit T dependence
arises from thermal expansion. This accounts for only
about half the total T dependence of the Raman mode, as
observed in [25,26]. The remaining dependence results
from significant anharmonic effects in c-BN, which we
include in our calculations.

Since the optical branch has small dispersion, we treat
the anharmonicity as a 1D on-site anharmonic oscillator, in
a similar approach to the QMC computation of the TO
Raman frequency of diamond [9]. At each volume, we
compute the effective Born-Oppenheimer potential well
for the TO mode with DMC and the BFD PP at nine
displacements along the mode eigenvector in the 64-atom
supercell. We fit the data to a quartic polynomial, and
numerically solve the 1D Schrödinger equation in this
analytic potential. This results in a set of single-phonon
energy levels, fEng, with nonuniform separation. From
fEng, we compute an intensity-weighted average Raman
frequency, ��, as a function of pressure and temperature.
The matrix element for the transition from n to n� 1 is
proportional to

ffiffiffi
n

p
and is weighted by the Boltzmann

occupation of state n, so the intensity-averaged frequency,
h�i is

h�i ¼
P1

n¼1 In
En�En�1

hcP1
n¼1 In

; where In ¼ ne�ðEnÞ=kBT: (7)

The excess thermal softening, i.e., beyond that from ther-
mal expansion alone, is accounted for by the thermal
average of the anharmonic frequencies. Figure 2 shows
the computed Raman frequencies compared with the ex-
perimental data reported in Refs. [25–27].
Both Refs. [25,26] give a rubylike calibration formula,

which can be expressed as

P ¼ ðR=bÞ½ð�= ��Þb � 1�; (8)

where R, ��, and b have quadratic T dependence. This
dependence is sufficient below 2000 K, but cannot repre-
sent our data at high temperature. We use a form which
captures the Boltzmann occupation of phonon excitations,

�ðP; TÞ ¼ �0ðPÞ þ �1ðPÞ exp
�
��2ðPÞ

T

�
; (9)

�nðPÞ ¼ cn

�
bP

Rn

þ 1

�
1=b

; n ¼ 1; 2; 3 (10)

with parameters in Table I(c) and plotted in Fig. 2(a). Note
that this formula cannot be analytically inverted, but a very
simple iterative solution can be used for calibrating pres-
sure from � and T.
The main axis of Fig. 2(b) gives the Raman frequency

versus pressure at 300 K. There is good agreement in the
relatively low-pressure region in which the Raman fre-
quency was measured. At very high pressure, the deviation
with respect to the extrapolation in [25] increases with a
maximum discrepancy of 38 cm�1 or, conversely, a devia-
tion in the pressure calibration of 50 GPa at 900 GPa. The
deviations with respect to [26] are 70 cm�1 and 120 GPa.
The experimental parameters capture the correct qualita-
tive high-pressure behavior up to 900 GPa, despite the fact
that data was available only to 20 and 64 GPa, respectively.
This suggests the form for the fit was well chosen.

FIG. 1 (color online). The c-BN EOS at 300 K, computed with DMC, compared to experiment. We plot the full EOS and the
pressure residuals with respect to DMC with the BFD PP. (a) gives the corrected EOS resulting from combining the EOS and PP data,
while (b) gives the pressure residuals for the same data. (c) gives the uncorrected pressure residuals from the PP simulations only.
Shaded areas represent the one-� statistical confidence region from QMC data.
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We have presented a fully ab initio pressure calibration
based on quantum Monte Carlo simulations, and have
introduced a method for all-electron simulations of solids
to eliminate bias from pseudopotentials. This method
should be applicable to at least first-row solids, allowing
increased accuracy in the study of other materials and
providing a new benchmark for other methods. The only
remaining systematic error in the static contribution to the
EOS is from the fixed-node approximation used in DMC.
For simple materials such as c-BN this error should be
quite small, and tends to cancel between different volumes.
Thus we believe the EOS is robust enough to be used
directly in experiment as a primary pressure calibrant,
and can be used to cross calibrate scales based on other
materials. Since the accuracy should not depend on com-
pression, our calibration can be used up to 900 GPa.
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FIG. 2 (color online). TO Raman frequency of c-BN as a
function of temperature and pressure. (a) compares our theoreti-
cal Raman frequency with the fitted form in Eqs. (9) and (10).
(b) compares our calibration at 300 K with experimental results
from [25,26] extrapolated to higher pressures. The black circles
are the QMC frequencies (errors are smaller than the symbols),
while the blue solid line gives the fit. The lower inset gives an
expanded view at low pressure, in which the shaded region gives
the statistical confidence region. The upper inset gives the
variation with temperature.
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